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LETTER TO THE EDITOR 

Exact two-phase coexistence surface for a three-component 
soiution on the square lattice 

Masato Shinmi and Dale A Huckaby 
Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA 

Received 27 October 1986, in final form 23 February 1987 

Abstract. A model three-component system is considered in which the bonds of a square 
lattice are covered by rod-like molecules of types AA, BB, and AB. The ends of molecules 
which are first neighbours to each other at a common lattice site interact with energies 
eAA,  and eAB.  The model is equivalent to an Ising model on the 4-8 lattice. The 
plait line and the two-phase coexistence surface in temperature-composition space are 
calculated exactly. 

Wheeler and Widom [ 13 introduced a lattice model of a three-component solution in 
which each bond of a lattice is covered by a rod-like molecule of type AA, BB, or AB. 
The ends of molecules near a common lattice site interact with energy EAA if both ends 
are of type A, EBB if both ends are of type B, and EAB if one end is of type A and the 
other end is of type B. 

Under the simplifying assumptions EAB + 00 and EAA = EBB = 0, the model can be 
mapped onto the standard Ising model on the same lattice. The bulk [ 13 and interfacial 
properties [2] of this simplified version of the model have been investigated. With the 
introduction of anisotrcpic couplings, the model has been used to study the roughening 
transition [3]. By adding an interaction between neighbouring AB molecules, the 
model can be used to study microemulsions [4]. A six-component version of the model 
has also been studied [ 5 ] .  

The model with general finite interactions &AA,  EBB,  and E A B  was shown to have 
no phase transitions if EABQ(EAA+EBB)/~ [ 6 ] .  For certain ranges of the interaction 
energies and chemical potentials, the Peierls argument [7] was used to prove the 
existence of phase separation or of long-range order at sufficiently low temperatures 
for the model on the square and simple cubic lattices [8]. 

The exact two-phase coexistence surface in temperature-composition space has 
been obtained for the model with general finite interactions on the honeycomb lattice 
[9]. In the present letter the exact two-phase coexistence surface in temperature- 
composition space is obtained for a modified version of the model with general finite 
interactions on the square lattice. 

A typical molecular configuration for the model on the square lattice is illustrated 
in figure 1. In the modified version, the ends of molecules near a common vertex 
which are on neighbouring perpendicular bmds  interact with finite energies & A A ,  E B B ,  

and &AB. This defines a variation of the general model considered earlier [6,8] in that 
only jrst-neighbour molecular ends near a common vertex are considered to interact. 
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Figure 1. A molecular configuration on the square lattice. Molecular ends of type A and 
B are represented by bails of two different sizes. 

Using the method previously described [8,9], the present model on the square lattice 
can be shown to be equivalent to an king model on the 4-8 lattice (see figure 2).  

I f  we let Si = +1 (Si = -1) indicate that a site i of a 4-8 lattice containing N sites 
is occupied by a type A (type B) molecular end, then the canonical partition function 
for the equivalent Ising model is given as 

where 

and 

J I  = ( & A A +  E B B - 2 & A B ) / 4  

Pi = ( 2 p A B  - F A A  - p B B ) I 4  (3) 

h1 = ( & B B - & A A ) / 2 - ( P B B - P A A ) / 4 .  

The sets Y correspond to simple squares in the 4-8 lattice, and the sets Ce correspond 
to the links between squares (see figure 2). 

In the present calculation, we consider primarily the case JI < 0, p, < 0, and h,  = 0. 
For this range of parameters, phase separation into AA-rich and BB-rich phases 
occurs at sufficiently low temperatures. For other ranges of the parameters J I ,  p I ,  and 
h l ,  other types of ordered phases occur in the model at sufficiently low temperatures. 
In fact, ordered low-temperature phases occur in the present modified version of the 

Figure 2. The 4-8 lattice. 
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model even if J, > 0. The result of [ 6 ] ,  which proves such phases do not occur in the 
original model with finite interactions if J, > 0, does not apply to the modified version 
of the model, for the equivalent Ising representation is not on a line graph. 

The mole fractions of AA, BB, and AB molecules in the model can be calculated 
from the relationships [9] 

X A B  = (1 - ~74-8112. 

Here 

14-8 = I(Si)it4-8l 

is the magnetisation of an Ising model on the 4-8 lattice and 

c 4 - 8  = (sisj)i,jc%. 

(Note that SiSj = 1 if an AA or BB molecule covers % and SiSj = -1 if an AB molecule 
covers %.) 

The 4-8 lattice is a lattice of the 'chequered type' for which the zero field ( h ,  = 0 )  
Ising partition function has been obtained exactly [lo]. Upon simplification of the 
general prescription for the partition function of an Ising model on a chequered type 
lattice [lo, 111, we obtained for the 4-8 lattice the simple expression 

1 
in h4-8 = lim - In Z4-8 = 7 dw, dw2 l11{2~[a +2p(cos o1 +cos w 2 )  

3 2 ~  Io2= I"2m N-m N 

+26(c0s(w1 +w,)+cos(w, -w2))3}. ( 5 )  

If we let R=-Jl /kT,  L=-pl /kT,  Cl=cosh2R,  S l=s inh2R,  C2=cosh2L, Sz= 
sinh 2L, then a, p, and S are given as 

a = 4c:s:s: +4( c: + C2)2 

p = -2s:s,( c:+ C,) ( 6 )  

= - p s 2  1 2. 

An exact expression for u4..8 is obtained by first noting that 

Letting I = 8 ln(h4-82-1'2), we obtain 

ar acu a i  a p  a r  a s  
a& a L  a p  a L  a s a L  
--+--+-- 

The integrals a r l a a ,  a i /@,  and a l i a s  were obtained using the method of Hurst 
[ 12, 131. The integral allas for the 4-8 lattice, although not given in [ 121 or [ 131, can 
be calculated using the methods therein or obtained by noting from equation ( 5 )  that 
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a a Z / a a + p a I / a p + S a I / a s = l .  The results are 

a i  
aa 
-= 2 K (  k ) / [  a( - 46)] 

- 
ap a(a -4S)(P + 2 6 )  

ar 2( ap - 2 a 6  + 4 p 2 ) ~ (  k )  - 4 p (  +4p + 46)n , (  V, k )  1 
a6 aS(a -4S) (P+26)  6 

+- _ -  - 

(9) 

where 

K ( k ) =  (1-k2sin2 8)-”’dO 

n l ( v ,  k )  = [:’ (1  + Y sin’ e) - ’ (  1 - k’ sin’ e)-’’’ dB 

r2 
(10) 

k 2 =  1 6 ( p z - ~ S ) / ( ~  -46)2 

v = 4 ( @ + 2 6 ) / ( a  -46) .  

An exact expression for u44-8 then follows immediately from equations (6 ) - (  10). 

lattice ( R  > 0, L> 0, h,  = 0) has been conjectured by Lin er al [ 141 to  be given as 
The exact spontaneous magnetisation of a ferromagnetic Ising model on the 4-8 

14-8 = F (  1 - K ’ ) ’ ’ ~  (11) 

where 

F = (1 +e-’LC;2)-”2 

K ’ =  {[2t,t2(l - r:)l4+[(i +2f:t:+ t : ) 2 -  16f;‘t:][l -2t:ti-i- r~]2}[2tlr2(1 + 
f ,  = tanh R 

t2  = tanh L. 

Equation (11) reproduces the exact low-temperature series expansion for 14-8 up to at 
least twelfth arder [14]. An incorrect formula for 14-8, previously published by Lin 
and Fang [15], did not contain the factor F. 

An equation relating R, and L, along the line of critical points can be obtained 
from an examination of the partition function given by equation ( 5 ) .  The symmetry 
of the intcgrand in equation ( 5 )  ensures that In A4-8 is an even function of R and of 
L. The argument of the logarithm of the integrand is non-negative, but has a minimum 
value of zero on the critical line. This minimum value occurs at w l  = w 2  = 0 if L, > 0 
and at w 1  = w 2  = 7r if L, < 0. After some algebra we obtain the simple result 

(13) 

(12) 

exp(-2/LCl)+ 1 = v‘? tanh 21R,I. 

exp(2RC) = (2 + f i  + 4 1  0 + 8v‘?}/2 = 4.01 5 . . . 

For the 4-8 lattice with a single coupling constant L, = R,> 0, we obtain 

(14) 

a result given numerically by Utiyama [lo]. Equation (13) for the case R, > 0, L, > 0 
can also be obtained from equation (1 1) by setting 14-8 = 0. 
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For plotting purposes, we define the reduced parameters p '=  Ip,/J,I and T ' =  
kT/IJ,I. Figure 3 contains a plot of pi against TL as given by equation (13). The 
maximum value of Ti,  which occurs as pi+ CO, is given from equation (13) as 

(15) max Ti = 2 / l n ( d +  1) = 2.269 . . . . 
Hence, for the case R > 0 and L >  0, phase separation into an AA-rich and a BB-rich 
phase does not occur if TI> 2.269.. . . 

Equation (13) and the exact expression for c ~ ~ - ~  can be combined to yield a formda 
for XAB along the critical line. Letting T =a tanh 2)Rc( (see equation (13)), we obtain 
the exact result 

The upper signs are to be used for L > 0, the lower signs for L < 0. 
For the case L >  0, a plot of X i B  against Ti (the plait line) is given in figure 4. The 

maximum value of XiB,  which occurs as Tk+O, is given by equations (13) and (16) 
for L > 0 as 

max X i B  = (2 - d ) / 4  = 0.1464.. . . (17) 

P i  

Figure 3. A plot of TL against /I: at the plait point. /I:+ m as TL+ 2 / l n ( d +  1) = 2.269. . . , 

Figure 4. A plot of XkB against TA along the plait !ine. The maximum value of X i B  is 
( 2 - d ) / 4 = 0 . 1 4 6 4 . .  ., which occurs as 71-0. As 7 : + 2 / l n ( d + l ) = 2 . 2 6 9 . .  . , XAB+O. 
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Figure 5. Isothermal coexistence curves at the temperature Ti,, -+ 0, T;,,, = 1.5,  Tic, = 2.0. 
The coexistence curve shrinks to a point at T ' =  2.269. . . . 

Hence there is no phase separation into AA-rich and BB-rich phases if XAB > 0.1464. . . . 
The presence of AB molecules thus greatly enhances the miscibility of AA and BB 
molecules. 

Using equations (4) and (8)-( 12), we obtained isothermal coexistence curves for 
the model. Three such curves are illustrated in figure 5. As T'+O, the model is 
equivalent to an Ising model on the square lattice with coupling constant L. The 
coexistence curve as T '+  0 is the same as the coexistence curve for the original model 
studied by Wheeler and Widom [ 13 for which J,  + -CO. (As p'+ CO, XAB + 0 and the 
model becomes equivalent to an Ising model on the square lattice with coupling 
constant R. )  

This research was supported by The Robert A Welch Foundation, Grant P-446. Masato 
Shinmi is a Robert A Welch Foundation Postdoctoral Fellow. 
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