Exact two-phase coexistence surface for a three-component solution on the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L465
(http://iopscience.iop.org/0305-4470/20/7/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Exact two-phase coexistence surface for a three-component soiution on the square lattice

Masato Shinmi and Dale A Huckaby
Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA

Received 27 October 1986, in final form 23 February 1987

Abstract

A model three-component system is considered in which the bonds of a square lattice are covered by rod-like molecules of types AA, BB, and AB. The ends of molecules which are first neighbours to each other at a common lattice site interact with energies $\varepsilon_{\mathrm{AA}}, \varepsilon_{\mathrm{BB}}$, and $\varepsilon_{\mathrm{AB}}$. The model is equivalent to an Ising model on the 4-8 lattice. The plait line and the two-phase coexistence surface in temperature-composition space are calculated exactly.

Wheeler and Widom [1] introduced a lattice model of a three-component solution in which each bond of a lattice is covered by a rod-like molecule of type $A A, B B$, or $A B$. The ends of molecules near a common lattice site interact with energy $\varepsilon_{A A}$ if both ends are of type $A, \varepsilon_{\mathrm{BB}}$ if both ends are of type B , and $\varepsilon_{\mathrm{AB}}$ if one end is of type A and the other end is of type B.

Under the simplifying assumptions $\varepsilon_{A B} \rightarrow \infty$ and $\varepsilon_{A A}=\varepsilon_{\mathrm{BB}}=0$, the model can be mapped onto the standard Ising model on the same lattice. The bulk [1] and interfacial properties [2] of this simplified version of the model have been investigated. With the introduction of anisotrcpic couplings, the model has been used to study the roughening transition [3]. By adding an interaction between neighbouring $A B$ molecules, the model can be used to study microemulsions [4]. A six-component version of the model has also been studied [5].

The model with general finite interactions $\varepsilon_{\mathrm{AA}}, \varepsilon_{\mathrm{BB}}$, and $\varepsilon_{\mathrm{AB}}$ was shown to have no phase transitions if $\varepsilon_{\mathrm{AB}} \leqslant\left(\varepsilon_{\mathrm{AA}}+\varepsilon_{\mathrm{BB}}\right) / 2$ [6]. For certain ranges of the interaction energies and chemical potentials, the Peierls argument [7] was used to prove the existence of phase separation or of long-range order at sufficiently low temperatures for the model on the square and simple cubic lattices [8].

The exact two-phase coexistence surface in temperature-composition space has been obtained for the model with general finite interactions on the honeycomb lattice [9]. In the present letter the exact two-phase coexistence surface in temperaturecomposition space is obtained for a modified version of the model with general finite interactions on the square lattice.

A typical molecular configuration for the model on the square lattice is illustrated in figure 1. In the modified version, the ends of molecules near a common vertex which are on neighbouring perpendicular $b \cdot 0$ nds interact with finite energies $\varepsilon_{\mathrm{AA}}, \varepsilon_{\mathrm{BB}}$, and $\varepsilon_{\mathrm{AB}}$. This defines a variation of the general model considered earlier $[6,8]$ in that only first-neighbour molecular ends near a common vertex are considered to interact.

Figure 1. A molecular configuration on the square lattice. Molecular ends of type A and B are represented by balls of two different sizes.

Using the method previously described [8, 9], the present model on the square lattice can be shown to be equivalent to an Ising model on the 4-8 lattice (see figure 2).

If we let $S_{i}=+1\left(S_{i}=-1\right)$ indicate that a site i of a 4-8 lattice containing N sites is occupied by a type A (type B) molecular end, then the canonical partition function for the equivalent Ising model is given as

$$
\begin{equation*}
Z_{4-8}=\sum_{\left\{S_{i}\right\}} \exp \left[-H_{4-8}\left(\left\{S_{i}\right\}\right) / k T\right] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{4-8}=J_{I} \sum_{(i, j) \subset \mathscr{S}} S_{i} S_{j}+\mu_{I} \sum_{(i, j) \subset \epsilon} S_{i} S_{j}-h_{I} \sum_{i \in 4-8} S_{i} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& J_{I}=\left(\varepsilon_{\mathrm{AA}}+\varepsilon_{\mathrm{BB}}-2 \varepsilon_{\mathrm{AB}}\right) / 4 \\
& \mu_{I}=\left(2 \mu_{\mathrm{AB}}-\mu_{\mathrm{AA}}-\mu_{\mathrm{BB}}\right) / 4 \tag{3}\\
& h_{I}=\left(\varepsilon_{\mathrm{BB}}-\varepsilon_{\mathrm{AA}}\right) / 2-\left(\mu_{\mathrm{BB}}-\mu_{\mathrm{AA}}\right) / 4 .
\end{align*}
$$

The sets \mathscr{S} correspond to simple squares in the 4-8 lattice, and the sets \mathscr{C} correspond to the links between squares (see figure 2).

In the present calculation, we consider primarily the case $J_{I}<0, \mu_{I}<0$, and $h_{I}=0$. For this range of parameters, phase separation into AA-rich and BB-rich phases occurs at sufficiently low temperatures. For other ranges of the parameters J_{i}, μ_{I}, and h_{I}, other types of ordered phases occur in the model at sufficiently low temperatures. In fact, ordered low-temperature phases occur in the present modified version of the

Figure 2. The 4-8 lattice.
model even if $J_{I}>0$. The result of [6], which proves such phases do not occur in the original model with finite interactions if $J_{I}>0$, does not apply to the modified version of the model, for the equivalent Ising representation is not on a line graph.

The mole fractions of AA, BB, and AB molecules in the model can be calculated from the relationships [9]

$$
\begin{align*}
& X_{\mathrm{AA}}+X_{\mathrm{BB}}+X_{\mathrm{AB}}=1 \\
& \left|X_{\mathrm{AA}}-X_{\mathrm{BB}}\right|=I_{4-8} \tag{4}\\
& X_{\mathrm{AB}}=\left(1-\sigma_{4-8}\right) / 2
\end{align*}
$$

Here

$$
I_{4-8}=\left|\left\langle S_{i}\right\rangle_{i \in 4-8}\right|
$$

is the magnetisation of an Ising model on the 4-8 lattice and

$$
\sigma_{4-8}=\left\langle S_{i} S_{j}\right\rangle_{i, j=\ell}
$$

(Note that $S_{i} S_{j}=1$ if an AA or BB molecule covers \mathscr{C} and $S_{i} S_{j}=-1$ if an AB molecule covers \mathscr{C}.)

The 4-8 lattice is a lattice of the 'chequered type' for which the zero field ($h_{1}=0$) Ising partition function has been obtained exactly [10]. Upon simplification of the general prescription for the partition function of an Ising model on a chequered type lattice $[10,11]$, we obtained for the $4-8$ lattice the simple expression
$\ln \lambda_{4-8}=\lim _{N \rightarrow \infty} \frac{1}{N} \ln Z_{4-8}=\frac{1}{32 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \omega_{1} \mathrm{~d} \omega_{2} \ln \left\{2^{4}\left[\alpha+2 \beta\left(\cos \omega_{1}+\cos \omega_{2}\right)\right.\right.$

$$
\begin{equation*}
\left.\left.+2 \delta\left(\cos \left(\omega_{1}+\omega_{2}\right)+\cos \left(\omega_{1}-\omega_{2}\right)\right)\right]\right\} \tag{5}
\end{equation*}
$$

If we let $R=-J_{I} / k T, L=-\mu_{I} / k T, C_{1}=\cosh 2 R, S_{1}=\sinh 2 R, C_{2}=\cosh 2 L, S_{2}=$ $\sinh 2 L$, then α, β, and δ are given as

$$
\begin{align*}
& \alpha=4 C_{1}^{2} S_{1}^{2} S_{2}^{2}+4\left(C_{1}^{2}+C_{2}\right)^{2} \\
& \beta=-2 S_{1}^{2} S_{2}\left(C_{1}^{2}+C_{2}\right) \tag{6}\\
& \delta=-S_{1}^{2} S_{2}^{2} .
\end{align*}
$$

An exact expression for σ_{4-8} is obtained by first noting that

$$
\begin{equation*}
\sigma_{4-8}=\left.2 \frac{\partial}{\partial L} \ln \lambda_{4-8}\right|_{R} \tag{7}
\end{equation*}
$$

Letting $I=8 \ln \left(\lambda_{4-8} 2^{-1 / 2}\right)$, we obtain

$$
\begin{equation*}
\sigma_{4-8}=\left.\frac{1}{4}\left[\frac{\partial I}{\partial \alpha} \frac{\partial \alpha}{\partial L}+\frac{\partial I}{\partial \beta} \frac{\partial \beta}{\partial L}+\frac{\partial I}{\partial \delta} \frac{\partial \delta}{\partial L}\right]\right|_{R} \tag{8}
\end{equation*}
$$

The integrals $\partial I / \partial \alpha, \partial I / \partial \beta$, and $\partial I / \partial \delta$ were obtained using the method of Hurst [12, 13]. The integral $\partial I / \partial \delta$ for the 4-8 lattice, although not given in [12] or [13], can be calculated using the methods therein or obtained by noting from equation (5) that
$\alpha \partial I / \partial \alpha+\beta \partial I / \partial \beta+\delta \partial I / \partial \delta=1$. The results are

$$
\begin{align*}
& \frac{\partial I}{\partial \alpha}=2 K(k) /[\pi(\alpha-4 \delta)] \\
& \frac{\partial I}{\partial \beta}=\frac{-4(\alpha+2 \beta) K(k)+4(\alpha+4 \beta+4 \delta) \Pi_{1}(\nu, k)}{\pi(\alpha-4 \delta)(\beta+2 \delta)} \tag{9}\\
& \frac{\partial I}{\partial \delta}=\frac{2\left(\alpha \beta-2 \alpha \delta+4 \beta^{2}\right) K(k)-4 \beta(\alpha+4 \beta+4 \delta) \Pi_{1}(\nu, k)}{\pi \delta(\alpha-4 \delta)(\beta+2 \delta)}+\frac{1}{\delta}
\end{align*}
$$

where

$$
\begin{align*}
& K(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} \mathrm{~d} \theta \\
& \Pi_{1}(\nu, k)=\int_{0}^{\pi / 2}\left(1+\nu \sin ^{2} \theta\right)^{-1}\left(1-k^{2} \sin ^{2} \theta\right)^{-1 / 2} \mathrm{~d} \theta \\
& k^{2}=16\left(\beta^{2}-\alpha \delta\right) /(\alpha-4 \delta)^{2} \tag{10}\\
& \nu=4(\beta+2 \delta) /(\alpha-4 \delta)
\end{align*}
$$

An exact expression for σ_{4-8} then follows immediately from equations (6)-(10).
The exact spontaneous magnetisation of a ferromagnetic Ising model on the 4-8 lattice ($R>0, L>0, h_{I}=0$) has been conjectured by Lin et al [14] to be given as

$$
\begin{equation*}
I_{4-8}=F\left(1-\kappa^{2}\right)^{1 / 8} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& F=\left(1+\mathrm{e}^{-2 L} C_{1}^{-2}\right)^{-1 / 2} \\
& \kappa^{2}=\left\{\left[2 t_{1} t_{2}\left(1-t_{1}^{2}\right)\right]^{4}+\left[\left(1+2 t_{1}^{2} t_{2}^{2}+t_{1}^{4}\right)^{2}-16 t_{1}^{4} t_{2}^{2}\right]\left[1-2 t_{1}^{2} t_{2}^{2}+t_{1}^{4}\right]^{2}\right\}\left[2 t_{1} t_{2}\left(1+t_{1}^{2}\right)\right]^{-4} \tag{12}\\
& t_{1}=\tanh R \\
& t_{2}=\tanh L .
\end{align*}
$$

Equation (11) reproduces the exact low-temperature series expansion for I_{4-8} up to at least twelfth order [14]. An incorrect formula for I_{4-8}, previously published by Lin and Fang [15], did not contain the factor F.

An equation relating R_{c} and L_{c} along the line of critical points can be obtained from an examination of the partition function given by equation (5). The symmetry of the integrand in equation (5) ensures that $\ln \lambda_{4-8}$ is an even function of R and of L. The argument of the logarithm of the integrand is non-negative, but has a minimum value of zero on the critical line. This minimum value occurs at $\omega_{1}=\omega_{2}=0$ if $L_{\mathrm{c}}>0$ arld at $\omega_{1}=\omega_{2}=\pi$ if $L_{\mathrm{c}}<0$. After some algebra we obtain the simple result

$$
\begin{equation*}
\exp \left(-2\left|L_{\mathrm{c}}\right|\right)+1=\sqrt{2} \tanh 2\left|R_{\mathrm{c}}\right| \tag{13}
\end{equation*}
$$

For the 4-8 lattice with a single coupling constant $L_{\mathrm{c}}=R_{\mathrm{c}}>0$, we obtain

$$
\begin{equation*}
\exp \left(2 R_{c}\right)=\{2+\sqrt{2}+\sqrt{10+8 \sqrt{2}}\} / 2=4.015 \ldots \tag{14}
\end{equation*}
$$

a result given numerically by Utiyama [10]. Equation (13) for the case $R_{c}>0, L_{c}>0$ can also be obtained from equation (11) by setting $I_{4-8}=0$.

For plotting purposes, we define the reduced parameters $\mu^{\prime}=\left|\mu_{I} / J_{I}\right|$ and $T^{\prime}=$ $k T /\left|J_{I}\right|$. Figure 3 contains a plot of μ_{c}^{\prime} against T_{c}^{\prime} as given by equation (13). The maximum value of T_{c}^{\prime}, which occurs as $\mu_{c}^{\prime} \rightarrow \infty$, is given from equation (13) as

$$
\begin{equation*}
\max T_{\mathrm{c}}^{\prime}=2 / \ln (\sqrt{2}+1)=2.269 \ldots \tag{15}
\end{equation*}
$$

Hence, for the case $R>0$ and $L>0$, phase separation into an AA-rich and a BB-rich phase does not occur if $T^{\prime}>2.269 \ldots$.

Equation (13) and the exact expression for σ_{4-8} can be combined to yield a formıla for X_{AB} along the critical line. Letting $\tau=\sqrt{2} \tanh 2\left|R_{\mathrm{c}}\right|$ (see equation (13)), we obtain the exact result

$$
\begin{equation*}
X_{\mathrm{AB}}^{\mathrm{c}}=\frac{1}{2}\left[1 \mp \operatorname{coth} 2\left|L_{\mathrm{c}}\right| \pm \frac{4}{\pi(2-\tau)}\left(\frac{\tau-1}{\tau+1}\right)^{1 / 2} \cos ^{-1}(1 / \tau)\right] \tag{16}
\end{equation*}
$$

The upper signs are to be used for $L>0$, the lower signs for $L<0$.
For the case $L>0$, a plot of $X_{A B}^{c}$ against T_{c}^{\prime} (the plait line) is given in figure 4. The maximum value of $X_{A B}^{c}$, which occurs as $T_{c}^{\prime} \rightarrow 0$, is given by equations (13) and (16) for $L>0$ as

$$
\begin{equation*}
\max X_{A B}^{c}=(2-\sqrt{2}) / 4=0.1464 \ldots \tag{17}
\end{equation*}
$$

Figure 3. A plot of T_{c}^{\prime} against μ_{c}^{\prime} at the plait point. $\mu_{c}^{\prime} \rightarrow \infty$ as $T_{c}^{\prime} \rightarrow 2 / \ln (\sqrt{2}+1)=2.269 \ldots$.

Figure 4. A plot of $X_{A B}^{c}$ against T_{c}^{\prime} along the plait line. The maximum value of $X_{A B}^{c}$ is $(2-\sqrt{2}) / 4=0.1464 \ldots$, which occurs as $T_{c}^{\prime} \rightarrow 0$. As $\bar{i}_{c}^{\prime} \rightarrow 2 / \ln (\sqrt{2}+1)=2.269 \ldots, X_{A B}^{c} \rightarrow 0$.

Figure 5. Isothermal coexistence curves at the temperature $T_{(\mathrm{a})}^{\prime} \rightarrow 0, T_{(\mathrm{b})}^{\prime}=1.5, T_{(\mathrm{c})}^{\prime}=2.0$. The coexistence curve shrinks to a point at $T^{\prime}=2.269 \ldots$.

Hence there is no phase separation into AA-rich and BB-rich phases if $X_{A B}>0.1464 \ldots$ The presence of $A B$ molecules thus greatly enhances the miscibility of $A A$ and $B B$ molecules.

Using equations (4) and (8)-(12), we obtained isothermal coexistence curves for the model. Three such curves are illustrated in figure 5. As $T^{\prime} \rightarrow 0$, the model is equivalent to an Ising model on the square lattice with coupling constant L. The coexistence curve as $T^{\prime} \rightarrow 0$ is the same as the coexistence curve for the original model studied by Wheeler and Widom [1] for which $J_{I} \rightarrow-\infty$. (As $\mu^{\prime} \rightarrow \infty, X_{A B} \rightarrow 0$ and the model becomes equivalent to an Ising model on the square lattice with coupling constant R.)

This research was supported by The Robert A Welch Foundation, Grant P-446. Masato Shinmi is a Robert A Welch Foundation Postdoctoral Fellow.

References

[1] Wheeler J C and Widom B 1968 J. Am. Chem. Soc. 903064
[2] Widom B 1984 J. Phys. Chem. 886508
[3] Robledo A, Varea C and Martina E 1985 J. Physique Lett. 46967
[4] Widom B 1986 J. Chem. Phys. 846943
[5] Varea C and Robledo A 1986 Phys. Rev. A 332760
[6] Huckaby D A and Kowalski J M 1984 Phys. Rev. A 302121
[7] Peierls R 1936 Proc. Camb. Phil. Soc. 32477
[8] Huckaby D A, Kowalski J M and Shinmi M 1985 J. Phys. A: Math. Gen. 183585
[9] Huckaby D A and Shinmi M 1986 J. Stat. Phys. 45135
[10] Utiyama T 1951 Prog. Theor. Phys. 6907
[11] Syozi I 1953 Sci. Papers Osaka Univ. 11
[12] Hurst C A 1963 J. Chem. Phys. 382558
[13] Green H S and Hurst C A 1964 Order-Disorder Phenomena (London: Wiley)
[14] Lin K Y, Kao C H and Chen T L preprint
[15] Lin K Y and Fang J M 1985 Phys. Lett. 109A 121

